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Variational data assimilation

Dual formulation

@ Concatenation over time:
o1
min —
SxeRn 2

with H € Mpm 2(R)

@ The problem can read:

1
[[x — xp + Ox||5-1 + SlIH ox - d||R-1

o1 1
min, Slx =+ 6x[ s + 5 all-s

st.a=Héx—d
@ KKT conditions:

> (RT'HBH" 4+ In)A = R7Y(d — H(xp — x)), dx =x, —x+ BHT X
@ RPCG (Gratton and Tshimanga, 2009)

> A: apply (preconditioned) truncated conjugate gradient in the HBH " inner
product (dimension m).

> Compute dx from A.

> Equivalent to the primal approach.

> Easily truncated without compromising convergence of the GN algorithm.

@ Computationally attractive when m << n.




Observation thinning

Motivations
@ "Huge" amount of data (even if the system is under sampled).
> Assimilation computationally expensive.
@ Heterogenous spatial distribution of the observation.
> Numerous observations in some areas VS few observations in some others.

@ Do we need to assimilate all the observations to reach a target accuracy?

Selection of observations
@ Criteria

> Do not assimilate the full data set.
> Computationally tractable.

@ Observations: a nested hierarchy {O;}i_y with

Vie[0,r—1], Oi COin
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© A "multigrid" observation thinning

© Towards a multigrid dual solver?



Outline

© A "multigrid" observation thinning



A bigrid data assimilation problem (I)

Notations

@ O, the coarse observation set with m. observations and O¢ the fine observation
set containing ms observations such that m. < m¢ and O, C Or.

@ Iy :R™F — R™< a restriction operator from the fine observation space to the
coarse one.

@ [1. the prolongation operator from the coarse observation space to the fine one
such as M. = O'frz- for some of > 0.

Fine and coarse subproblems

@ The fine observation grid data assimilation problem:

(Smm *||X+(5Xf XbHB 1+ = HHf(SXf df||f?;1 (1)
xf€

(R " He BH{ + Img)As = Ry (dr — He(xs — X))
D> (0xf, Af) s.t. { Ox¢ = xi — x + BHT \s




A bigrid data assimilation problem (II)

Notations

@ (. the coarse observation set with m. observations and O¢ the fine observation
set containing ms observations such that m: < m¢ and O C Or.

@ [ :R™ — R™e a restriction operator from the fine observation space to the
coarse one.

@ [l the prolongation operator from the coarse observation space to the fine one
such as M. = o4/ for some ¢ > 0.

Fine and coarse subproblems

@ The coarse observation grid data assimilation problem:

L1 1
smin 5 lbx 4 oxe — Xb||5-1 + ST (Hrdxe — de) 1

Or equivalently:

o1 1 - 1 _
;min §||x+5xc—><b||,23_1+§\\HZ(Hf5xc—df)||§,c 1, with R. ' = (;)2/?6 )

(RZINI HeBHI N + I )Ae = RZINI (df — He(xp — X))
> (6Xc7)\c) s.t. { (5XC = xp— x+ BHanc)\c




An a posteriori error bound

Theorem

Let dx¢ be the solution to the fine problem and \¢ the corresponding Lagrange
multiplier to the constraint. Analogously, let dx. be the solution to modified coarse

problem (2) and Ac the corresponding Lagrange multiplier. Then the a posteriori error
bound satisfies the inequalities

||)\f - nc)\CHf?f+HrBHfT S ||df - Hf(SXC - anc)‘“”(ZR,-JrH,-BH;')*l
H)\f - I_Ic)\CHf?vaFBH;r < de — Hfdxc — anc/\ch?{—l

Remarks
@ R¢ + H¢BH/ : difficult computation of the inverse in variational data assimilation
(B ~ complex matrix-vector operator).
@ Bound: no need for the solution of the fine problem (A¢ or dx¢).

@ Observations: "useful" if the associated components of A¢ — N\ are large.




How to construct Of from O.7

Assumptions

@ Coarse observation set: partition of the observation space in a finite number of
.\ Pc .\ Pc
cells {¢;}7<; of measures {w;}7<,.

@ Auxiliary set Of: all observations in O, with the addition of a single additional
potential observation point in the interior of each cell.

Selection

@ Error indicator for each cell ¢; of the auxiliary observation set Of

Vi €Ny nj=w; ((dr — Feoxe — ReAN) ], (R H(dr — Frdxe — Ref1cA0))];)

P
@ Construction of a minimal set S, 9277,- < Z n, 0€(0,1)
Jj=1 keSy,
> Priority to non-included cells with maximal error indicator values.

@ Or=0.U (Ukes,,ok)




An example of observation sets
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Incremental 4D-Var with a multigrid observations thinning

@ Set i =0, initialize x and the coarse observation set Op.
@ Find the solution (dx;, )\-) to the problem

1
min IIX,+5x, Xb||23—1+§||Hi5X: dil|2

Sx;€ R717

by approximately solvmg the system
(RTYH;BHT + Im;)\i = R7M(di — Hi(xp — x7))
using RPCG and then setting 0x; = x, — x; + BH, ;.
© Given the set of observations O, construct the auxiliary set O;. ;.

@ For each cell ¢ of observation set Oj11 compute the error indicators
ni = wi{(dig1 — Hip10x — Rip1 PiiXp)lj, (RS (disy — Hiadx; — Ria PiiX7))|p)
with A; a modified Lagrange multiplier.
© Build the set S, such that
Pit1
O (D mi| <D m
j=1 keS,
using the bulk chasing strategy.

@ Construct the set O;.1 as
Oit1:=0; U U Ok

keSy,

- @ Update x; < x; + dx;, increment i and return to Step 2.




Example: the Lorenz-96 system

Configuration of the experiment
@ Model

> uis a vector of N-equally spaced entries
around a circle of constant latitude.
> Chaotic behavior for F > 5 and N > 11.
. du;
Vj € Ny, 0 € No, 100 —
1 dt |

E(_Uj+9—2Uj+G—1 + Ujro—1Uj+o+1 — Ujre + F)
Uy = Uo; U—1 = Un—_1; UNt1 = U1 f
6
with N =40, F =8, k =120 and © = 10,
T =120 and At = g5 ‘ Vi
s /’ 72
« ’ 0

J Dynamical system (space and time)

Coordinate system

@ Background and observations
> Normal distributed additive noise: N(O,ai/o)

with 0 = 0.2, 0, = 0.1.

> B=o0zl, and R = o3l,.




Example: Cost function and RMS error
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Multigrid methods for solving Ax = b with iterative methods
Idea

@ Large scale components that are slow to converge on the high resolution grid may
be reduced faster and at a smaller cost on a coarser resolution grid.

@ Also applicable for nonlinear systems (Full Approximation Scheme; Brandt, 1982)
W

Two-level grids algorithm

@ Pre-smoothing: Apply 11 steps of an iterative method S; on a fine grid
Afo = bf, Xf = Slul(Xr7 bf)
@ Coarse grid correction
o Transfer the residual onto a coarser grid
re = If (b — Afxg), If : restriction operator
@ Solve the problem on the coarse grid

AcdXe = re
o Transfer the correction onto the fine grid

Xf = xf + Icfc?xc, Icf . interpolation operator
@ Post-smoothing: Apply v, steps of an iterative method S> (most of the time
identical to S1) onto a fine grid

Afo = bf, Xf = S;Z(fo, bf)




Multigrid methods for solving Ax = b with iterative methods
Cycles

Fine grid
Intermediate grid

Coarse grid

V-cycle W-cycle

Convergence (Hackbusch, 2003)
@ Smoothing property: smoothing steps should remove most of the error at small
scales
o Ellipticity of A (high frequencies associated to the largest eigenvalues).
@ Smoothing properties of the iterative solver.

@ Prolongation/restriction operators: no amplification of the small scale components
during a coarse correction step.

@ Approximation properties: coarse grid correction steps should remove the error at
large scales.
o Ac close to As (discretization of the differential operator, Ac = IfAfICf)




Multigrid methods in variational data assimilation
First-order necessary condition: VJ(x) = 0.

@ Optimal control, constrained-PDE optimization: Brandt, Lewis and Nash (2005),
Borzi and Schulz (2009).

@ 4D-variational data assimilation: Neveu et al. (2011), Cioaca et al. (2013).

> State space formulation.

@ Dual space formulation: A= HBH™ + R; b=d — H(xp — x).

Numerical experiments
@ Solution of a linear advection equation:

Jdu du .
E+ca—x_o, with ¢ > 0,x € [0, L], t € [0, T]

with ¢ = 1m.s™!, L = 100m, T = 78.125s
@ Control variable: u(t = 0).

) — &2 2
@ B=ope L, R =03l

@ No observation thinning strategy: uniform observation grid at each level (3).




Numerical application

‘Solution

Solution

2

" Direct salver
Dual multigria
Background

T

n a1 az  na 04 ns 6A a7 nA na

Primal approach: 1 V-cycle.

Dual approach: 100 V-cycles.

Multigrid dual approach

@ Increase of the residual after each
coarse grid correction step.

@ Conditions of convergence not
fulfilled.

Lagrange mutpler




Conclusion and perspectives

@ A variational data assimilation approach combining observation thinning and
dual-space conjugate-gradient techniques.

> Exploiting the nested structure of the observations.
> A posteriori error bounds based on Lagrange multipliers.

@ Preliminary experiments.

> Faster decrease of the cost function vs the amount of assimilated
observations or flops.

@ Preliminary experiments with a multigrid solver in dual space.

> No improvement of the performances compared to an unigrid solver (even
worst).

D> Characteristics of the problem not suitable for multigrid strategy? (Lagrange
multipliers ~ "noise")

@ Further investigations

> Modelling of the observation error covariance matrix properly taking into
account the nested structure of the observations.



Thank you!



Example: Observation sets and adaptive errors
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Example: Control variable
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Example 2: 1D wave system with a shock

Configuration of the experiment

@ Model
t2 u(z t) — 22 u(z t) + f(u) =0,
u(0,t) = u(1,t) =0,
u(z,0) = uo(z), 2 S:u(z,0) =0,
0<t<T, 0<z<1, Initial xo := uo(z)

with f(u) = pe™, Ax ~2.8-1072 (360 grid
points), T =1 and At = &.

(2]

~

@ Background and observations

n

r> Normal distributed additive noise: N(0,0%,)
with g = 0.2, 0o = 0.05. N
> B =02, and R = o3l,.

o

o
© 01 o0z o3 o4 05 a6 07 08 03 1

Dynamical system (space and time)



nj

Example 2: Observation sets and adaptive errors
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Example 2: Control variable
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Cost f. VS nb obs

Example 2: Cost function and RMS error
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